Thursday, May 23

Different Types of Energy


Introduction to different types of energy:

It is often said that a person A is more energetic than a person B. The meaning of this statement is that a person A can do more work than the person B. Person A is said to have more energy. Energy is needed to do some work. After doing a lot of work, one feels tired and need more energy. Thus, anything which is capable of doing work has energy. The capacity of doing work by a body or an object is known as the energy of  the body or the object.I like to share this Rotational Kinetic Energy Formula with you all through my article.

Energy is defined as the ability or the capacity to do work.

Units of Energy:

Energy can be measured in Joules. Joule is named after an English physicist named James Prescott Joule who lived from 1818 to 1889. He discovered that heat is a type of energy. One joule is the amount of energy needed to lift 1 pound about 9 inches.


Types of Energy:


Kinetic Energy- The energy possessed by a body by virtue of its motion is known as kinetic energy. For example a moving bus, Moving bullets, flowing water etc.

Potential Energy-  The energy possessed by a body by virtue of its position or shape, is known as Potential energy. For example water stored in a dam , a stone lying on the top of hill, a wound spring of a watch, a stretched bow and arrow  etc.

Mechanical Energy- The sum of kinetic energy and potential energy of a body is known as mechanical energy.



Types of Energy:


Heat or Thermal Energy- The energy possessed by a body due to its temperature is known as heat energy. For example energy of hot water, energy of hot air etc.

Chemical Energy- The energy released in chemical reactions is known as chemical energy.
Sound Energy- The energy of a vibrating object producing sound is known as Sound energy.
Electrical Energy- The energy of moving electrons in a conductor connected with a battery is known as electrical energy.
Nuclear Energy- The energy released when two nuclei of light elements combine with each other to form a heavy nucleus or when a heavy nucleus breaks into two light nuclei is known as nuclear energy.

Solar Energy- The energy radiated by the sun is known as Solar energy

Wednesday, May 22

White Light Spectrum


Introduction to white light spectrum:

White light spectrum is the visible light waves and they are electromagnetic waves that can be seen.  The white light is not white. It consists  of different colors of different wave length.  White light is a mixture of  of Red, Orange, Yellow, Green, Blue, Indigo, and Violet.   These form a part of the electromagnetic spectrum.  Electromagnetic spectrum is a bunch of radiations and visible light is a part of this spectrum.   These Electromagnetic radiations are  radio waves, Microwaves,  infrared, visible light rays, Ultraviolet, x-rays and gamma rays.


Description about White light spectrum


The EM (Electromagnetic spectrum) is a bunch of radiations.  Radiation is an energy that travels and spreads. It can be visible white light of radio waves.

Newton gave his findings that when white light is passed through a transparent medium like glass this created a spread of colored light rays from r  Red, Orange, Yellow, Green, Blue, Indigo, and Violet.  These are the colors  of the rainbow. This ordered separated of colored light is known as the spectrum. The white light spectrum also consists of UV light but that cannot be seen. When white light passes  through a prism, the white light is split  into the colors of the visible light spectrum. Water vapor in the atmosphere can also split the white light of different wave lengths  creating a rainbow.   Red color has longer wave length and violet has the shortest wave length.  There lies continuous range  of spectrum of wavelengths between red and violet.



White light spectrum passing through prism


The white light spectrum is the section of electromagnetic radiation spectrum that is visible to be human eye.  It ranges in wavelength from approximately 400 Newton meter (4 x 10-7 m) to 700 Newton meter  (7 x 10-7 m). It is also known as the optical spectrum of light.

When white light is passed through a prism it causes the wavelengths to bend at slightly different angles. That is due to refraction. This bending of light results in splitting of white light into visible colors. This cause the rainbow. The airborne  particles acts as the refractive medium which causes the splitting of white light into different angles.

Static Electricity Materials


Static Electricity

Static electricity is the accumulation of excess charge on the surface of an insulator, that is, a material that does not conduct electricity.

Why does the charge accumulate?

An atom is made of a positively charged nucleus (made of protons and neutrons) surrounded by several shells of electrons which are negatively charged. Objects that we see everyday are made of electrically neutral atoms or molecules. This means that the number of positive charges and negative charges are equal. However, when two electrically neutral materials are in contact, the electrons may move from one material to another. This means that one material gets an excess of negative charge, while the other one gets an excess of positive charge. If you separate the materials after the electrons have moved, there will be a charge imbalance in the materials.

In a conducting material, the charges are immediately conducted away, and the charge does not accumulate. So, the phenomenon of static charge accumulation or static electricity can be seen only in insulators or non-conductors.


Experiments of static electricity materials:


You can see how static charges accumulate by doing these simple experiments.

Experiment 1:

Rub a balloon vigorously on a sweater.  The rubbing motion increases the area of contact between the two surfaces, making it easier for charges to migrate. The balloon gets negatively charged and the jumper aquires a positive charge. Now, if you bring the balloon close to your hair, your hair will cling to the balloon. This is known as static cling.

Experiment 2:

Use a plastic comb to comb through your hair about ten times. Now, turn on a tap so that you have a steady water flow. The flow should not be very fast. If you bring the comb near the stream of water without touching it, the water will bend towards the comb. This is because the charges on the comb pull on the uncharged water.

Removing static electricity:

Static electricity can be removed by bringing the material into contact with a conductor, or with a region that has an excess charge that is opposite to the material. This causes the charge to neutralize, resulting in a static 'shock.' In regions of high humidity, the air itself will conduct away the static charges.

Tuesday, May 21

Moon Distance From Earth


Introduction to moon distance from earth:

To begin with moon's distance from earth, let us know that Moon is a natural satellite of our earth. In our solar system, there are nine planets and out of which seven planets have their moons. Moons are also the part of the solar system. Actually, the name moon means the artificial satellite. That is the name of the family not the name of a particular natural satellite. Because earth has only one natural satellite, so that we can say it moon, but the planets has so many artificial natural satellites so there is the particulars name given to all the moons. Here we discuss about the distance of the moon from our earth.


Moon's distance from earth:


A solid heavenly body that revolves around a planet is called its natural satellite or the moon. Moon is the natural satellite of the earth, which revolves around the earth. Natural satellites, i.e., moons do not have their own light. They reflect the sun light falling on them and appear shining. The size of the moon of the earth is one fourth of the size of the earth. The diameter of the moon is 3480 Km. The mass of the moon is one eighth of the mass of the earth, i.e., 7.35 × 1022 kg.  The distance of the moon from the earth’s surface is 3.8 × 105 km. The surface of the moon is hard and loose soil, craters, mountainous. There is no atmosphere on the moon. The temperature of the moon at the daytime is 110°C and at the nighttime is -150°C.

Conclusion of moon distance from the earth:


Moon completes one revolution around the earth in 27.3 days. As the temperature is too high and too low on the moon, the survival of life is not possible. The conditions of the survival of life are moderate temperature, existence of water, oxygen rich atmosphere and the presence of hydrogen, carbon, nitrogen elements and the main important thing is protective layer, which can protect the moon groom the ultra violet radiations of the sun. All these conditions are not full fill on the surface of the moon so the life cannot exist on the moon.

Tides and Waves Energy


Introduction to tidal renewable energy:

There are two types of energy in nature i.e. renewable and non-renewable. Non renewable sources of energy includes those sources of energy which derived from fossil-fuels. It includes, petroleum, natural gas, diesel, etc.  Renewable sources includes those sources which are gift of nature and available free of cost to us. Such as Hydro energy, solar energy, Wind energy, Thermal energy. Geo-thermal energy etc. One of them is "Tidal energy".  Tidal energy refers to the form of the energy which is derived from the motion of  tides waves. Tides are supposed to be generated in sea by the gravitational pull of the moon.  When Tides flow at certain pace, it acquires tremendous energy due to its motion i.e. kinetic energy. Mainly, it is Kinetic energy which causes it to do work.


Cause of energy in tides:

Energy in Tide is stored in the form of pressure. When water molecule is flowing,  the electrons start to move at high speed. This moving molecule of water takes to the air because of its quickly moving electrons. This moving water molecule keeps away from other water molecules. This distance gives rise to pressure. When this process of moving water occurs at large scale, enormous amount of pressure is built. When this pressure is released, energy can be generated. This energy is known as Tidal Energy



Uses and limitations of tidal energy:


Tidal energy has industrial, agricultural and house hold uses. This energy is used in industries for power generation. The transfer of energy from the tides to the object causes it to move.Tidal energy produced is used to rotate the turbine, which in turns rotates shaft of the generator.  Thus, electricity is produced. However there are certain limitations regarding the uses of Tidal energy. It can be used only under certain conditions and at certain places where there is ample scope of its availability. The geographical location of the place is a varying factor for the use of tidal energy. The locations near the sea are good sites for harnessing the tidal energy. One of the major limitation is that it is not available 24 hours a day.

What is Wind Power Energy


Introduction on what is wind power energy:

Wind energy is more upgrading energy. It was less known to people in ancient times, sailor used wind energy to sail boat then it was used for much more purpose. Wind energy was converted into mechanical energy and that lead many applications. The most beneficial was used in generation of electrical energy mostly in hilly areas. This led to generation of high power of energy and was transmitted using cables.



Wind Power Systems


The wind turbines play a vital role in conversion of wind energy into mechanical energy and thus help in generating electrical energy. Wind turbines are attached with blades and ensured it can withstand high velocity of wind, as wind hits the blades it rotates which in turn rotated the motor of the generator and helps in generating electricity. This electricity is transmitted usually using wires to towers and mostly as three phase alternating current. The rotational speed of turbine cannot be predicted and so do the voltage and frequency varies and it may not be at constant times. Most hilly stations are located with turbines especially with three blades with capacity to up hold the high velocities of wind and produce electricity.

The output is rectified to direct current (DC) to charge batteries or to be inverted for grid connection.

Wind turbines can be classified into two groups: vertical-axis design and the horizontal-axis variety. A horizontal-axis wind turbine normally has two or three blades. These three-bladed are operated with blades facing the wind.


Wind Turbine


One can see wind turbines situated in almost all hill stations and its rotation depends  on the speed of wind. As winds velocity increases so the acceleration of blades increase and rotates at a high rotational speed. The rotation is not constant even during rain the turbines rotate at better speed and which activated the generator at the time and is transferred using wire cables. The main advantage is that it doesn’t produce any waste or effect the environment in either ways. Sometimes a drastic increase in the wind will increase the turbine speed numerously and thus the energy consumption. In hilly station this is the main source of energy and comparatively installing a small turbine is cost effective.

Wednesday, May 15

Angular Displacement


We know that linear displacement of a body is the difference between final position and initial position of a body. When there is a rotational motion then the displacement is called angular displacement and is different from linear displacement. I like to share this formula for angular velocity with you all through my article.

Let us understand What is Angular Displacement?
It is the angle through which a body has been rotated about certain axis. In a rotational motion the velocity of the particle keeps on changing at every instant.
So rotational motion is dealt I a different way. In this case the body is considered as rigid instead of particle as the distance between all the particle remains constant throughout the motion.

Observe the diagram given above. The object starts moving from its initial position to point A. In such a case the distance of the object remains constant from origin throughout its motion.
The coordinates of the object is then defined in polar coordinate system as (r, Ө) where r is its distance from origin and Ө is the angle it has covered from x axis. Ө keeps on varying and r remains constant during the motion. As particle rotates along the circle it covers an arc on the circle which is given by:
S = r.Ө, here s is the arc covered by the object; r and Ө are radius and angle covered by the object.
Angular displacement is Ө and Angular Displacement Units are radians and is given by the following relation:
Ө = S/r
Example: if a body rotates an angle of 180 degree on a circle of radius r then angular-displacement is given by the distance travelled n circumference which is πr divided by the radius such as:
Ө = πr/r = π
If the object starts motion on the circle at some point other than on x axis which makes an angle Ө1 with x axis and then moves to other point which makes an angle Ө2 with x axis then angular displacement is given by the final angle minus initial angle i.e. Ө = Ө2 – Ө1.


Angular Velocity and Acceleration are other rotational terms. During the rotation even if the particle moves with a constant rotational speed the particle accelerates. This is due to the fact that it always changes its direction of movement. Angular acceleration is given as rate of change of angular velocity and is denoted by . Its unit is radians.second2.
= d^2Ө/dt^2
= dω/dt. Here ω is angular velocity. It is the rate of change of angular position. Its unit is radians/second.
ω= dӨ/dt.