Wednesday, April 3

Negative and Positive Wires


Introduction to negative and positive wires:

Let us first discuss about electricity, which can pass through the wires. There are two types of current, one is called the alternating current, which is used, in electrical mains and the other is called direct current, which is used, in the car’s light and in the radio. Direct current is obtained by the battery.  Let us discuss the wires, which carry the electric current.


Types of Negative and positive wires


Generally, there are three types of the wires:

Positive wire,
Negative wire and
Ground wire


In case of direct current, the positive wire is the wire, which carries 120 V. Negative wire is the wire, which has about 0 V. Ground wire is actually connected to the ground. Negative wires should be at zero potential or close to zero potential. It is the central point between the two phases of the electrical service coming to your house from the transformer on the electrical pole. Positive wire is the wire, which supplies the electric current to the electrical appliance. It is supplied to the devices in your home through a set of circuit breakers or fuses in older homes. It is wired directly to the outlets, and goes to the permanently installed lighting through the permanent wall switches. There is a standard colors in house wiring are: positive wire is of red color, negative wire is of black in color and the ground wire is of green in color.


Conclusion for negative and positive wires


Some of the devices in our daily life have only two flat prongs, and some have the third, round grounding prong. The two-prong devices are typically low current, low-power devices like lamps, bulbs, clock radios, can openers and the like. The third prong generally appears on higher-powered devices: washing machines, vacuum cleaners, televisions, computers, leaf blowers, drills, etc. This is usually done for safety reasons. This is also, why miswired outlets are dangerous: if the neutral and hot are reversed, the appliance will work just the same. However, if the appliance fails, the 'stray' energy remains under the 'top' insulating layer (next to the user), Not in the bottom one, putting the user at much greater risk. In older tools with metal cases, the user would actually get electric shocks in this event.

Wednesday, March 27

Home Electric Power


Introduction to Electric Power:

Electricity or electric power is generated at place far away from where it is to be consumed. The electric power is transmitted over long distances at high voltage which is gradually reduced by using step down transformers to 230 V, at which it is supplied to our household. Before, the power lines are connected to the electric meter which records the units of electric power consumed, a fuse is connected. This is known as company fuse. I like to share this Basic Kinematic Equations with you all through my article.

The wires coming out of the meter are connected to a main switch. When the main switch is on, then only the house receives power. After the main switch another fuse is provided, known as the consumer’s fuse. The main switch is a double pole switch. It has iron covering. The iron covering is earthed. The switch and the meter are locally earthed. From the meter the connections are taken to the distribution board.


Elecrical power system types


There are two types of wiring system

1. The tree system

In this system, the connections are taken from the distribution board to different parts of the house, each connection resembling a branch of a tree. Each connection is taken through a fuse F. It should be noted that different connections are taken in parallel, so that when the fuse in one part blows off, the remaining parts are unaffected.


2. The ring system

The ring system consists of a ring circuit starting from the main fuse box, which contains a fuse of 30 amperes. For each appliance a separate connection starts from the live part of the ring and ends on the ring. Since the power rating of each appliance is known therefore, connecting wires of proper current capacity can be used for each appliance. This makes it less expensive. Each appliance is connected with separate fuse, so that one fuse blows off the other appliances in the same room continue to work.

Earthing

To avoid this shock from the appliance, appliance is earthed. That is, we connect the metal case of the body to the earth which is zero potential. Besides the live and neutral wires, a third known as the earth wire is also provided.

Galaxy Definition


Introduction to galaxy definition:

We always observes that there are infinite numbers of stars in the sky. The question arises hat how are the stars distributed in the space. Astronomers have found that the starts are arranged in the huge groups. These groups are called the galaxies. The stars in the galaxy are held together by the gravitational attraction between them. Here we discuss about the galaxy.


A few points about Galaxy


Generally, a galaxy is the clusters of stars in the large amount. A component of the universe that has a huge group of stars and other celestial bodies bound together by the force of gravitation is called a galaxy. Apart from stars, a galaxy also has huge clouds of gases from which the new stars are born. A galaxy may have planets, moons, asteroids, comets and another celestial bodies. The number of stars in a galaxy can range about a million to hundred of billions. It is also estimated that there are over 100 billions galaxies in the universe and astronomers are discovering more every day. The galaxy in which our sun is located is called the Milky Way galaxy or Akashganga.


Types of galaxies


Galaxies have different shapes. Based on the shapes, mainly, three types of the galaxies are there, which are  Spiral galaxies, elliptical galaxies and irregular galaxies. In a spiral galaxy the stars forms a big spiral pinwheel. The Milky Way galaxy is a spiral galaxy. In an elliptical galaxy the stars are confined mainly in ellipsoid volume. An irregular galaxy does not have any particular shape.



Conclusion to galaxy


Most of the stars of the Milky Way galaxy lie in the disc shaped region, this region is called the galactic disc. The central part of the disc is thicker and bulges on both the sides. The density of stars in the bulge is much higher than that in the outer region of the galaxy. Milky Way galaxy is a large galaxy. The diameter of the galactic disc is about 100, 000 light years and its average thickness is about 70 light years.

Electricity Generation From Water


Introduction:

Electricity can be generated from water in two methods; one is the method where we use the potential energy of the water in dams using the water wheels. The other source of energy is capturing the energy from the ocean waves. The energy generated by the water is a renewable energy, as we know that water is present abundantly in the nature and there is no consumption of water during the generation of electricity from the water. Most of the countries rely on this method that is production of electricity using water because it is a renewable energy resources and gives sustainable energy.  The energy generated by the water is termed as the hydro electricity.


Sources of electricity generation


Dams: In this case whenever a dam is built at the beginning itself the tunnels are built where the water flows and these tunnels are lined with turbines. As we let out the water to flow through these tunnels the water flows over the turbines which are lined along the tunnels.As a result these turbines rotate,and thus electricity is generated.

Ocean waves: The electricity generated from the ocean is known as ocean wave power because this energy is generated by the oceanic waves. This is the process where the tidal energy is used to generate the electricity, whenever there is a high tide on the sea shore or the oceans there is lot of energy in these waves which is converted into electricity by running of the turbines. The water from the tides is stored and then this water is left over the turbines which in turn produce the electricity.


Run of the river: This is process where the natural elevations on the rivers are made use to produce the electricity. In this case the water is made to fall on the turbines which are placed at the bottom of the elevation of the river, it can be a natural or a man made elevation on the river. Here also the turbine are used to produce the electricity.

Friday, March 22

Light Measurement


There are many different units for Light Measurements. Let’s first discuss some of them.

1. Candela (cd)- It is the unit of Lumen Measurement of a light source in a specific direction, also called as candle. This intensity is perpendicular to the direction of the surface of a black body.
2. Foot candle (fc or ftc)- It is a unit of intensity which used to measure in lumens per square foot.
3. Lux (lx)-  It is the unit of illumination which equals to one lumen/ square metre.
4. End Foot candle- This unit is a measurement which is based on the focused beam only. It is a focal beam measurement from point A to point B at one-foot distance.
5. End Lumens- This measurement is based on a spot of light.


6. Luminance- Also called as Luminous Flux which is the quantity of light leaves the lamp and measured in lumens (lm).
7. Luminous (Light Level): It is the amount of light measured on the work plane in the lighted space. Remember a work plane is an imaginary horizontal, tilted or vertical line where the tasks in the space are performed.
8. Beam Lumens- It is the total flux in that region of space where the intensity is more than 50 percent of the maximum intensity.
9. Lux- It is a metric unit of measure for illuminance of a surface. One lux = one lumen/ square meter= 0.0929 footcandles.
10. Light Level- It is the measurement of intensity on a plane at a specific location known as illuminance which is measured in footcandles.
11. Efficiency—the measure of the luminous efficiency of a radiant flux which is expressed in lumens/ watt is equals to efficiency.
12. Watt- It is a measurement of electrical power which does not relate to the output level and defines as the rate of energy consumption by an electrical device in operating stage. Watts= Volts x Amps x Power Factor (PF)



The wavelength is a length of a function period which shows the distance between any two points with the same phase and measured in meter light.  Let’s discuss; ‘How to Measure Wavelength of Light’? It can calculate either from the energy or frequency by using the speed and Planck constants. Remember the energy is typically expressed in electron volt (eV) units and the frequency is expressed in Hertz where one Hz equals 1/sec. Therefore the relation between velocity, frequency and wavelength can be written as follows;

Velocity of Light = (wavelength) x (frequency)(meters) x (cycles per second or Hertz)
= (3 x 108 m/sec)

Initial Velocity


The first question that arises when we read about distance, speed and velocity is the basic difference between speed and velocity. Velocity is the directional quantity while speed is not. We have already discussed about the importance of direction while calculating vector quantities.Having problem with Formula for Velocity keep reading my upcoming posts, i will try to help you.

Velocity in simple terms can be defined as the distance covered per unit time in a particular direction. This means that here we are also taking the direction in consideration. If we were to define speed we could have said it the distance per unit time. We will not have mentioned the direction bit.

We can divide the velocity into two parts. These are final and the initial velocity. As it is clear from the name the In. velocity is basically the starting velocity of an object or a body while final velocity is the finishing velocity. It may seem confusing at first but is quite easy.


Let us take an example. If the car starts and attains a velocity of 30 kilometers per hour then the initial vel. Considered would be zero km per hour while the final velocity will be 30 km per hour after 4 hours in a particular direction say southwards. Calculate Initial Velocity is easy. We can directly use the equation of motion which says
v = u + a t - - - - - - -(1)
Here v is the final velocity
U is the initial velocity
A is the acceleration
And t is the time taken to attain the final velocity.
Also s = u t + ½ a t 2 - - - - - - - - -(2)
Here s is the distance covered in a particular time interval.
This is the Equation for Initial Velocity. There is yet another equation for its Calculating Initial Velocity. It is:
V2 = u2 + 2 a s - - - - - - - - - - -(3)
Let us assume a ball is rolling on a platform. It attains a velocity of 10 m per seconds with an acceleration of 4 m per second 2. The time taken is 2 seconds.
Let us try to calculate the initial velocity.  Take the first equation into consideration.
So v = u + a t
10 = u + 2 * 4
10 = u + 8
u = 2
So initial vel. is  2 metre per second.
You can also calculate it according to different values of s, a, v, t in different situations.

Wednesday, March 13

Velocity Mass Equation


Mass in special relativity

The term mass  in special relativity usually refers to the rest mass of the object, which is the Newtonian mass as measured by an observer moving along with the object. The invariant mass is another name for the rest mass of single particles. The more general invariant mass (calculated with a more complicated formula) loosely corresponds to the "rest mass" of a "system." Thus, invariant mass is a natural unit of mass used for systems which are being viewed from their center of momentum frame, as when any closed system (for example a bottle of hot gas) is weighed, which requires that the measurement be taken in the center of momentum frame where the system has no net momentum. Under such circumstances the invariant mass is equal to the relativistic mass (discussed below), which is the total energy of the system divided by c (the speed of light) squared. I like to share this Formula for Acceleration due to Gravity with you all through my article.

The concept of invariant mass does not require bound systems of particles, however. As such, it may also be applied to systems of unbound particles in high-speed relative motion. Because of this, it is often employed in particle physics for systems which consist of widely separated high-energy particles. If such systems were derived from a single particle, then the calculation of the invariant mass of such systems, which is a never-changing quantity, will provide the rest mass of the parent particle (because it is conserved over time).
Despite the convenience that the invariant mass is the same as the total energy of the system (divided by c2) in the center of momentum frame, the invariant mass of systems (like the rest mass of single particles) is also the same quantity in all inertial frames. Thus, it cannot be destroyed, and is conserved, so long as the system is closed. (In this case, "closure" implies that an idealized boundary is drawn around the system, and no mass/energy is allowed across it).


The term relativistic mass is also sometimes used. This is the sum total quantity of energy in a body or system (divided by c2). As seen from the center of momentum frame, the relativistic mass is also the invariant mass, as discussed above (just as the relativistic energy of a single particle is the same as its rest energy, when seen from its rest frame). For other frames, the relativistic mass (of a body or system of bodies) includes a contribution from the "net" kinetic energy of the body (the kinetic energy of the center of mass of the body), and is larger the faster the body moves. Thus, unlike the invariant mass, the relativistic mass depends on the observer's frame of reference. However, for given single frames of reference and for closed systems, the relativistic mass is also a conserved quantity.Although some authors present relativistic mass as a fundamental concept of the theory, it has been argued that this is wrong as the fundamentals of the theory relate to space-time. There is disagreement over whether the concept is pedagogically useful. The notion of mass as a property of an object from Newtonian mechanics does not bear a precise relationship to the concept in relativity.

For a discussion of mass in general relativity, see mass in general relativity. For a general discussion including mass in Newtonian mechanics, see the article on mass.