Showing posts with label electrical circuits. Show all posts
Showing posts with label electrical circuits. Show all posts

Thursday, May 2

How to Read Electrical Circuits


Introduction on how to read electrical circuits:

Electrical circuits are the combinations of different electrical appliances connected in a particular manner. Electrical circuit is the symbolic representation of the circuit, which helps us to define all the parameters of the circuits such as voltage, current, resistance, capacitance and inductance, etc. It is the diagram in which all the electrical appliances connect. It is the very short way to create the circuit.

Please express your views of this topic Electric Current Formula by commenting on blog.

Concept of reading electrical circuits:


In the electrical circuit, first find the values that is given in the standard units. Such as resistance in micro ohms so convert it in ohms, current in milli-ampere then convert it in ampere, voltage in milli-volt so convert it in volt, capacitance in micro farad so convert it in farad. Now first find the equivalent resistance of the circuit.

We have two formulae for finding the equivalent resistance one for series combination of resistances and other for the parallel resistances.

For the series combination of resistances Rs = R1 + R2 + R3

For the parallel combination of resistances `Rp = 1/ (R1) + 1/(R2) + 1/(R3)`

Having problem with Gravity Formula keep reading my upcoming posts, i will try to help you.

Procedure for reading electric circuit:


To read any electrical circuit first find that which of the resistances are in series combination and which are in the parallel combination. Now apply the formula for finding the equivalent resistance. Now we use ohm’s law to find the respective current.

First, always try to find the current in the whole circuit and then try to find the potential difference across the series resistance. As we know the potential difference of the series resistance now try to find the potential difference of the parallel resistance. Now again using the Ohm’s law find the current in the remaining resistances. As we know the current and the potential of each resistance, we completely read the electrical circuit. If the circuit containing capacitors then we use the same procedure.  But the formula to find the equivalent capacitor is different from the resistors.

For the series combination of capacitors  `1/C_S = 1/(C1) + 1/ (C2) + 1/(C3)`

For the parallel combination of capacitors Cp = C1 + C2 + C3  same procedure is to followed to completely read the electrical circuit.