Wednesday, February 20

Magnetic Field Moment


Introduction to magnetic field moment:

Magnetic moment is a determination of its propensity to align through magnetic field. Equally the magnetic moment also magnetic field might be measured towards vectors which contains a magnitude and the direction. The way of the magnetic moment point as of the south within the way of north pole of a magnet. Magnetic field created through a magnet is relative toward its magnetic moment. I like to share this Effective Magnetic Moment with you all through my article.


Magnetic field moment


For instance, circles of electric current, an electron, a tavern magnet, also planet all contain magnetic moments.

Further accurately, the word magnetic moment usually refers toward a system magnetic dipole moment, which it is; create the initial word within the multiple extension of a common magnetic field. Dipole part of object's magnetic field be symmetric on the way of magnetic dipole moment, also reduce like the inverse dice of the distance as of the object.

Magnetic moment of solenoids:

Magnetic moment of a number of turn solenoid is resolute when the vector total of the instant of entity rotates. In the case of the same rotation, it is equivalent just towards the entity that turns instant multiply through the whole number of rotation within the solenoid. Formerly, the value of sum magnetic instant is established, it will be used to create the distant field also to store energy within the outside field and within the similar approach like used for the single-turn circle. Having problem with Centripetal Acceleration Equation keep reading my upcoming posts, i will try to help you.

Type of magnetic sources:

Motion of electric charges.
Intrinsic magnetism of elementary particles.

Magnetic dipole moment


Since the term used for the torque lying on an existing circle, the uniqueness of the existing loop be summarized within its magnetic instant.

`mu=IA`

Magnetic instant be able to be measured toward exist a vector quantity through the way vertical to the current circle within the right-hand-rule way.

Torque is known through,

`tau=muxB`

When we see within the geometry of an existing circle, this torque be inclined to line up the magnetic instant through the magnetic field B, thus this correspond to its lowly energy configuration. Potential energy related through the magnetic moment can be written as,

`U(theta)=-mu.B`

Thus, the distinction within energy among aligned also be anti-aligned,

`DeltaU=2muB`

Wednesday, February 13

Space Wave Propagation


Introduction:

Generally the space wave propagation has the following components:

Direct wave
Reflected wave
Direct wave is getting from the transmitting antenna and the reflected wave is getting from the surface of the earth.

Space waves are the waves which are used for satellite communication and line of sight path. The waves have frequencies up to 40 MHz provides essential communication and limited the line of sight paths. Having problem with vector equation keep reading my upcoming posts, i will try to help you.


propagation of space waves:


The output signal which is received from the receiving antenna depends on the phase difference among the direct and reflected rays. The earth cause the reflection of phase difference of 1800. If the differences between the antennas are not too long then the direct and reflected waves which are arriving at the receiving antenna oppose the phase which cancelling each other.

By raising the heights of antennas space waves becomes more effective. The transmission of direct waves is not straight always. It may be refracted on the earth’s surface. Is this topic Regions of the Electromagnetic Spectrum hard for you? Watch out for my coming posts.


Antenna for space propagation:


Antenna:

One of the important components of the space wave propagation is antenna. It is located at both sides of the transmitter and receiver.

The transmitting antenna radiates the electromagnetic waves and the receiver antenna gets the transmitted signal from transmitting antenna. The antenna is acts as a conversion device.

Process of transmitting antenna: Converts the electrical energy into electromagnetic energy

Process of receiving antenna: Converts the electromagnetic energy into electrical energy

Normally the length of the antenna is `lambda/4` . Here the wavelength of radio frequency is `lambda`.


Television signals:


Television signal propagation:

The frequency range of Television signal is from 88MHz to 960 MHz.

Possibilities for transmitting TV signals:

With the help of satellite for communication which can reflect the signals back to earth
With the help of very height antennas
Coverage range: The TV signals can cover the range of d=`root()(2R_eh)` where h is the height of antenna

This covering range of TV signals is increased by increase in height of antenna.

Uniform Motion


Introduction to Uniform Motion

A motion is said to be uniform if the particle covers equal distances in equal intervals of time, however  small these intervals of time may be , always in the same direction. Strictly speaking , no motion is uniform.

When a particle has uniform motion, neither the magnitude nor the direction of velocity changes , so the velocity is constant in uniform motion and is equal to Instantaneous velocity of the particle. I like to share this equation for frequency with you all through my article.

So uniform is a relative concept. If an object A is in uniform motion relative to another object B, then from B's view there appear to be no force applied to A; i.e. it appears to be neither accelerating nor decelerating, nor changing directions or moving in a curve. The same should apply vice versa.

when a particle possess uniform motion, it's velocity- time graph is a straight line parallel to time axis.If the velocity of the particle is taken as positive, the straight line is taken above the time axis and if it is negative, then the V-t graph will be a straight line below the time axis


Uniform Motion : Velocity- time Graph


The Velocity- time graph for uniformly accelerated rectilinear motion is straight line sloping upwards.

The velocity- time graph for a uniformly retarded motion is a straight line sloping downwards.

Let us consider a particle moving with constant acceleration .If U and V be the velocities at time t1 and t2  respectively, then

`V= U+at` gives the equation connecting initial velocity, final velocity, acceleration and time. I have recently faced lot of problem while learning Effects of Radiation on Humans, But thank to online resources of math which helped me to learn myself easily on net.


Uniform Motion : V-t Graphs and Acceleration


The Velocity- time graph for the uniformly accelerated motion of a particle is a straight line sloping upwards.

The area under the V-t graph gives the distance covered by the particle.It is calculated by the equation `V^2= U^2+2ad`

so here distance is as area under Velocity- time graph

The slope of the V- t graph for uniformly accelerated motion gives the acceleration.

Wednesday, February 6

Laser Cutting Process


Introduction to laser cutting process:

Laser which stands for Light amplification by stimulated emission of radiation.When electromagnetic radiation or some times visible radiations  released by the stimulated emission then this is known as Lasers.Electrons present in the elements can change their state in order to attain stability.When any energy is supplied then electrons are excited to higher states,but at the higher states these are not so stable so it jumps down by releasing some energy.These energy comes under certain range .It can be in the electromagnetic range,visible range or may be in some other range of the spectrum.Laser is a monochromatic and short wavelength rays.These rays have high frequency. Is this topic Definition Kinetic Energy hard for you? Watch out for my coming posts.

Laser beams are very useful in many fields.Laser cutting is also a field where lasers are used to cut the materials.Lasers are very high power beams when it is subjected to the materials then material melts,vaporises or burns,or it is blown away by the high pressure beams.As compared to the mechanical cutting this process of cutting is very effective and accurate.Some times materials are very hard to cut by using normal mechanical methods,so in these cases laser cutting  helps and it makes the cutting very easy and simple.

Types of Laser

There are mainly three types of laser cutting device is used depending upon the material used for the production of lasers.These materials are.

1)Carbon Dioxide

2)Neodymium

3)Neodymium yttrium Aluminium garnet

These different lasers are used in different applications.These are used for cutting,trimming,scribing.engraving etc.To produce the laser beams the lasing materials are stimulated ,then the generated beam is reflected so many times internally by using mirrors till it gains high  energy  to come out as monochromatic beams.



Different Methods of Cutting by Laser

By using laser cutting of material can be done in various ways.The high energy of the beam is mainly used to cut the material.Some of the methods are described below

By vaporising-in this method the material is heated to its boiling point to obtain a gap.

Thermal stress cutting-This method is used for the brittle material .When Brittle material is subjected to high heat then it results in crack.

melt and blow-In this method first the material is melt and then it is blown by high pressure beams.

By cold cutting

Scribing

General Electric Refrigerator


Introduction to General Electrical Refrigerators:
A refrigerator is a cooling apparatus. The common name which we use is Fridge. Cooling apparatus is in the sense it is used to cool the products. Mainly it is used for the storage of food devices. This devise is used to reduce the rate of spoilage of food stuffs. The refrigerator keeps a temperature a few degrees above the freezing point of water. It is also called as Freezer. Having problem with What is Electric Charge keep reading my upcoming posts, i will try to help you.

Types of Refrigerators:

1. Absorption Refrigerator – In this quite running is required. They don’t have bulky mechanism.

2. Compressor Refrigerator – They make noticeable noise.

3. Solar Refrigerator – They are designed to reduce electrical consumption .these have advantages that they do not use refrigerants that are harmful to environment.

Non food use: They are used in laboratories, for storing samples analysis, storing film stock and morgues.

Freezer: Freezer units are used in households and in industry and commerce. Domestic freezers are generally upright units resembling refrigerators.

4. Magnetic Refrigerator – These Refrigerators work on the magneto caloric effect. The cooling effect is triggered by placing a metal alloy in a magnetic field.

Temperatures zones and rating:

Some refrigerator are having are having four zones to store different types of food.

1.  -18^0 C (-0^0 F) (freezer)

2.  0^0C (32^0 F) (meats)

3.  5^0 C (41^0 F) (refrigerator)

4.  10^0 C (50^0 F) (vegetables)

The capacity of a refrigerator is measured in either litters or cubic feet.  Typically the volume of a combined fridge-freezer.is split to 100 liters (3.53 cubic feet) for the freezer and 140 liters (4.94 cubic feet) for the refrigerator, the values are highly variable. Please express your views of this topic Temperature Formula by commenting on blog.

Features of General Electric Refrigerator:

The newer refrigerators m y includes:

A powerful failure warning

Chilled water and ice available from an indoor stations o the door need not be opened.

Automatic defrosting.

Automatic cooling at the steam

Inductors in Ac Circuits


Description of an inductor:

An inductor in a AC circuit is a component that has the property of inductance. Inductors have very wide applications. The inductance of an inductor makes the current to lag the voltage in an AC circuit and this phenomenon is used in certain applications. The inductors are also called reactors, chokes and coils depending upon the application. I like to share this formula celsius to fahrenheit with you all through my article.

The inductor is basically a closely wound coil around a material of high permeability (magnetically susceptible).

Let us study what exactly are the functions of inductors in AC circuits.

Concept of Inductance by an Inductor in Ac Circuits:

The above diagram shows a AC circuit connected to an inductor. When an AC voltage is applied to an inductor, the rate of change in current passes through that induces an emf, as per Faraday’s law. This emf, as per Lenz’s law opposes the change in current.

The inductance of an inductor is denoted by L and its unit is Henry, named after the American scientist who discovered electromagnetic induction at the same time with the great scientist Michael Faraday from England.

One unit of Hendry produces an emf of 1 volt for a change in current of 1 ampere per second. Understanding An Electric Current is Measured in Units of is always challenging for me but thanks to all math help websites to help me out.

Inductors in Ac Circuits:

Inductors in AC circuits, as explained earlier opposes the change in current. In a way it can be termed as a magnetic resistor. Like resistors, the equivalent inductance of various inductors is the sum of the values of all the inductance values when they are connected in series. That is,

L = L1 + L2 + L3 ….. + Ln

Similar to the case of resistors, in parallel operation,

(1/L) = (1/L1)+ (1/L2) + (1/L3) ….. + (1/Ln)

Like resistors in resistive circuits, the inductors in AC circuits converts the electrical energy but stores that in the magnetic field.  The energy stored is given by,

E = (1/2) LI^2

Thursday, January 31

Right Angle Mirror


Introduction to right angle mirror:

Any smooth polished surface, which can return the rays of light into the same medium, is called mirror. Looking glass is the best example of mirror. Any highly polished metal surface also acts as a mirror. Still water or oil have a smooth surface and hence acts like a mirror. Even highly polished furniture or the utensils acts like a mirror. Here we discuss the right angle mirror. I like to share this equation for converting celsius to fahrenheit with you all through my article.

Right Angle Mirror

If the two mirrors are arranged so that they inclined at an angle of 90° to each other are called the right angle mirrors. Mirrors are based on the optical phenomenon called reflection. When a ray of light traveling from one optical medium to another optical medium it bounces back from the interface with the change of the angle is called reflection. We can see our image in the looking glass due to the phenomenon of reflection of the light falling on us. Now let us consider that the two plane mirrors M and N are placed at right angle to each other as shown in the diagram.

Let them intersects at point O. Now an object is placed between the mirrors. We get three images of this object. As we know that the number of images formed by the mirrors which are inclined at an angle `theta`° is given by 360 / `theta` - 1 (if 360 / `theta`  is an even number). So, we get the three images formed by this system of the mirrors.
.

Conclusion for the Right Angle Mirrors

Here we conclude that the images formed by the system of the right angle mirrors is virtual that means we cannot get these images on the screen. The size of the images is same as that the object. The image formed is laterally inverted. The system of the right angle mirrors are used in the solar cookers, kaleidoscopes, periscopes etc. Generally, we use two plane mirrors to make the right angle mirror system but in the different condition and for the several purposes we use the combination of the plane and spherical mirrors.