Showing posts with label Elasticity. Show all posts
Showing posts with label Elasticity. Show all posts

Wednesday, March 6

Properties of Matter Solid


Introduction to Properties of Matter Solid:
Let us see about the properties of matter solid. Matter is prepared by molecules and atoms.  We have three states of matter. The three state of matter is differing from each other because of the difference in the magnitude in the intermolecular forces. One of the states is Solid. The solid has an exact shape and size.

Solids possess a definite shape and volume at ordinary temperature. Depending on the arrangement of atoms the properties of solid varies. Based on their internal structure, solids matter are classified into two types- crystalline and amorphous.


Types of Solids:


Based on their internal structure, solids matter are classified into two types. They are,

Crystalline
Amorphous


Crystalline Solid:

The properties are, atoms are arranged in a regular, repeated and periodic pattern in crystalline solids. This orderly arrangement of atoms resembles that of brick laying by masons. Examples of crystalline solids are diamonds, quartz, rocksalt, mica, sugar, metals, etc.

Amorphous solid:

The properties are, atoms are set in a disorderly manner in amorphous solid. The best case of an amorphous solid is glass. Other examples are plastic materials, wood, etc.


Elasticity:

An external force ‘F’ is applied on the body of mass ‘m’, the body acquire an acceleration ‘a’ such that a=F/m. Due to the change, the body may suffer a deformation. This external force is known as deforming force.

As the body is deformed, internal forces are set up within the body, which tends to bring the body back to the original shape. The force developed within the body on account of relative molecular displacement is called internal force or elastic force or restoring force.

Elasticity is the properties of the material of a body by virtue of which the body regains its original shape when the deforming force is removed. Few bodies, which do not show any tendency to recover their original shape after the removal of deforming force. Such bodies are called plastic bodies.

The property by virtue of which the body does not regain its original shape after the removal of the deforming force is called plasticity. The restoring force developed per unit area of the body is called as stress. Its unit is Nm-2. The strain produced in a body is defined as the ration of change in dimension to its original dimension. The maximum value of stress within which a body regains its original state is called elastic limit.

Hooke’s law states that within the elastic limit of the body, the stress is proportional to the strain produced.

Stress/ strain= a constant.

Using this formula, we get a constant is known as modulus of elasticity.