Define Electromagnetism
Advancement of modern physics is related to putting electricity and magnetism together to
get electromagnetism. It is governed by the fact that electric current has capacity to produce a
magnetic field. According to Faraday’s law, a change in electric field produce magnetic field and
change in magnetic field produces electric field. Scottish physicist Maxwell gave the complete
mathematical explanation of electromagnetism.Having problem with electrolytic capacitor symbol keep reading my upcoming posts, i will try to help you.
Biot Savart Law Example
The electro magnet is the example of the Biot Savart Law. As we know that as the variable
current passes through a wire it produces a magnetic field. It can be observed in any household
by using a coil of wire connected to the AC source and put a magnetic or ferro magnetic material
near it. We will observe that the magnetic or ferromagnetic material is attracted towards the
coil until the coil is carrying the current. The attraction cease to exists as soon as current is
disconnected from the coil.
Mutual inductance formula
Mutual inductance is defined as production of electromotive force in a close coil due to change in
current in the coupled coil.
The induced electromotive force (Emf2) in coil 2 due to change in current (I1) in coil 1is given by
following formula:
Here M is mutual inductance.Please express your views of this topic Electric Circuit by commenting on blog.
Induction Heating Circuit
Induction heating circuit includes a work coil in which alternating current is induced using a high
frequency electricity. This induced alternating current produces intense and quickly changing
magnetic field within the work coil. This object or work-piece that is to be heated is then placed
under this alternating magnetic field. When placed within the alternating magnetic field, a current
flow is induced in the work-piece. These currents are eddy current that flow in small circles.
What is Induction Heating
Induction heating is the process of heating an electrically conductive material using alternative
magnetic field. It is a non-contact process of heating that use high frequency electricity to heat
the material. As mentioned, it is a non-contact process, hence the heating process does not
contaminate the heated material. As compare to other heating processes in which heat is
generated in heating element and then is used to heat the material, induction heating involves
generation of heat in the material, to be heated, itself. Hence induction heating is an efficient
process of heating.
Electromagnetism Equations
Electromagnetism is governed by four basic formulas that are represented by Maxwell
Equations. These four Formulas are Gauss Law, Gauss Law in Magnetism, Faraday’s Law and
Amperes Maxwell Law.
These formulas are given below.
1. Gauss’a Law: it is given below
= Q/0
2. Gauss’s law in magnetism is given below:
=0
3. Equation for Faraday’s Law is given below:
= - (d
4. Ampere-Maxwell law formula is given below:
= µ0I+e0µ0 (d
Advancement of modern physics is related to putting electricity and magnetism together to
get electromagnetism. It is governed by the fact that electric current has capacity to produce a
magnetic field. According to Faraday’s law, a change in electric field produce magnetic field and
change in magnetic field produces electric field. Scottish physicist Maxwell gave the complete
mathematical explanation of electromagnetism.Having problem with electrolytic capacitor symbol keep reading my upcoming posts, i will try to help you.
Biot Savart Law Example
The electro magnet is the example of the Biot Savart Law. As we know that as the variable
current passes through a wire it produces a magnetic field. It can be observed in any household
by using a coil of wire connected to the AC source and put a magnetic or ferro magnetic material
near it. We will observe that the magnetic or ferromagnetic material is attracted towards the
coil until the coil is carrying the current. The attraction cease to exists as soon as current is
disconnected from the coil.
Mutual inductance formula
Mutual inductance is defined as production of electromotive force in a close coil due to change in
current in the coupled coil.
The induced electromotive force (Emf2) in coil 2 due to change in current (I1) in coil 1is given by
following formula:
Here M is mutual inductance.Please express your views of this topic Electric Circuit by commenting on blog.
Induction Heating Circuit
Induction heating circuit includes a work coil in which alternating current is induced using a high
frequency electricity. This induced alternating current produces intense and quickly changing
magnetic field within the work coil. This object or work-piece that is to be heated is then placed
under this alternating magnetic field. When placed within the alternating magnetic field, a current
flow is induced in the work-piece. These currents are eddy current that flow in small circles.
What is Induction Heating
Induction heating is the process of heating an electrically conductive material using alternative
magnetic field. It is a non-contact process of heating that use high frequency electricity to heat
the material. As mentioned, it is a non-contact process, hence the heating process does not
contaminate the heated material. As compare to other heating processes in which heat is
generated in heating element and then is used to heat the material, induction heating involves
generation of heat in the material, to be heated, itself. Hence induction heating is an efficient
process of heating.
Electromagnetism Equations
Electromagnetism is governed by four basic formulas that are represented by Maxwell
Equations. These four Formulas are Gauss Law, Gauss Law in Magnetism, Faraday’s Law and
Amperes Maxwell Law.
These formulas are given below.
1. Gauss’a Law: it is given below
= Q/0
2. Gauss’s law in magnetism is given below:
=0
3. Equation for Faraday’s Law is given below:
= - (d
4. Ampere-Maxwell law formula is given below:
= µ0I+e0µ0 (d
No comments:
Post a Comment